Power Generation

Electricity
Cogeneration / CHP
Trigeneration / CCHP
Quadgeneration
Power Generation

Through on-going investment in research and development, GE’s gas engines are highly efficient at the conversion of the energy within gas into electrical energy.

Electrical generation plants come in two main forms:
- Stable base load (continuous) generation
- Electricity peaking

Base-load generation is useful where there is a stable source of fuel, such as natural, landfill or coal gas to power the generators. GE Jenbacher gas engines are renowned for their reliability in the field and when challenged with difficult gases. The generation of electricity alone typically takes place where there is no local need for heating and cooling. The power that is produced can either be exported to the local electricity grid, or alternatively be used in island mode operation to power local facilities. Electricity peaking stations typically operate in standby mode, then when there is a peak in demand for power from the electricity grid; the gas engines receive a signal to commence operation. Due to their flexibility and robustness gas engines are able to provide a rapid response to fluctuating demand. They are then turned off as demand reduces.

Cogeneration or combined heat and power (CHP) systems are configured to produce both electricity and useful heat. GE Jenbacher CHP systems utilise heat produced during the combustion of the gas in the engine and facilitate process efficiencies of more than 90%. This efficient form of energy conversion achieves primary energy savings of roughly 40% by using a gas engine cogeneration system as opposed to separate electricity and heat generation equipment. Cogeneration plants are typically embedded close to the end user and therefore help reduce transportation and distribution losses.

The heat from the engine is available in two key forms. Firstly low grade heat is recovered from the cooling water circuit of the engine. This is typically available as hot water for recovery via a plate heat exchanger. Secondly high grade heat from the engine exhaust can be utilised. This heat leaves the engine at over 450°C and can be used directly, in a boiler to generate steam or combined with the low grade heat and recovered as hot water.
Trigeneration – Combined Heat, Power and Cooling

Trigeneration or combined heat power and cooling (CHPC) systems take the concept of cogeneration to the next level. Trigeneration systems produce electricity along with useful heat and cooling water. Here the heat recovered from the engine is used in absorption chillers. These heat driven chillers are able to provide cold water for utilisation in air conditioning systems or for process water.

Combining a CHP or cogeneration plant with an absorption refrigeration system allows utilisation of seasonal excess heat for cooling. The hot water from the cooling circuit of the plant serves as drive energy for the absorption chiller. The hot exhaust gas from the gas engine can also be used as an energy source for steam generation, which can then be utilised as an energy source for a highly efficient, double-effect steam chiller. Up to 80% of the thermal output of the cogeneration plant is thereby converted to chilled water. In this way, the year round capacity utilisation and the overall efficiency of the cogeneration plant can be increased significantly.

Quadgeneration - Combined Heat, Power, Cooling with CO₂ recovery

Quadgeneration systems are some of the most advanced gas engine driven power plants in the world. Quadgeneration encompasses the features of a trigeneration system, with electricity, heat and cooling and includes the recovery of carbon dioxide from the exhaust gas.

Carbon dioxide can be used for a number of purposes including encouraging growth in plants or if cleaned to food grade quality can then be used in carbonised drinks industry.

Quadgeneration not only provides the benefits of high efficiency generation, utilising over 90% of the energy contained within the gas, it also utilises carbon dioxide, a by-product of the combustion process to give the highest levels of performance.

Our Competence

Clarke Energy has comprehensive experience in the engineering, installation and maintenance of gas based power generation facilities.

The GE Jenbacher gas engine is known for having the highest levels of electrical efficiency on the market. When coupled with a contractual maintenance agreement with Clarke Energy it will give peace of mind that they will achieve the highest levels of availability and returns for their project.

Cogeneration Schematic

![Cogeneration Schematic](image1)

Trigeneration Schematic

![Trigeneration Schematic](image2)
If you would like to discover more about gas engine based generation, or how Clarke Energy can help develop your power scheme please contact your local sales office.

Algeria
33 bis, rue des Pins
Hydra, Alger, Algérie
Tel. +213 2160 88 86
Fax. +213 2169 35 01
galia@clarke-energy.com

Australia
Building 1
2-4 Stirling Street
Thebarton
South Australia 5031
Adelaide
Australia
Tel. +61(0)8 8290 2100
Fax. +61(0)8 8443 5848
australia@clarke-energy.com

Bangladesh
Lotus Kamal Tower TWO
Level -16
59 & 61, Gulshan South Avenue
Gulshan-1
Dhaka-1212, Bangladesh
Tel. *88–02–9841638
9857355
9898837
Fax. *88–02–8826530
bangladesh@clarke-energy.com

France
Z. A. de la Malite
RD6
Bouc Bel Air 13320
France
Tel. +33 (0)4 42 90 75 75
Fax. +33 (0)4 42 90 75 76
france@clarke-energy.com

India
Shivkiran, Plot No. 160
CTS No. 632
Lane No.4
Dahanakar Colony
Kothrud
Pune 411038
India
Tel. +91 20 30241777
Fax. +91 20 30241800
india@clarke-energy.com

Ireland
Unit 7
Newtown Business Park
Newtownmountkennedy
County Wicklow
Ireland
Tel. +353 (0)1 281 0010
Fax. +353 (0)1 281 0520
ireland@clarke-energy.com

New Zealand
Unit 5
56 Pavilion Drive
Airpark II
Mangere
Auckland 2022
New Zealand
Tel. *64 (9) 256 9910
Fax. *64 (9) 256 9912
newzealand@clarke-energy.com

Nigeria
28, Joel Oggunnaie Street
GRA
Ikeja
Lagos
Nigeria
Tel. *234 (0)181 567 23
nigeria@clarke-energy.com

South Africa
Botswana
Mozambique

PO Box 1535
Link Hills 3652
KwaZulu-Natal
South Africa
Tel. *27 31 763 3222
Fax. *27 31 763 3041
southafrica@clarke-energy.com

Tanzania
Regus Centre
7th Floor
Amani Place
Ohio Street, PO Box 38568
Dar es Salaam
Tanzania
Tel. *255 (0) 222 196817
tanzania@clarke-energy.com

Tunisia
Immeuble Saray
1er étage – Bureau n°B.2
Les Berges du Lac
1053 Tunis, Tunisie
Tel. *216 (0)71 65 50 62
Fax. *216 (0)71 65 50 59
tunisia@clarke-energy.com

UK Head Office
Power House
Senator Point
South Boundary Road
Knowsley Industrial Park
Liverpool L33 7RR
United Kingdom
Tel. *44 (0)151 546 4446
Fax. *44 (0)151 546 4447
uk@clarke-energy.com