Agricultural Biogas

Clarke Energy is the authorised distributor and service partner for GE Energy’s gas engine division in a growing number of countries across the world. In addition to providing high-efficiency, reliable gas engines we combine this with the expertise and resources to deliver unbeatable product support.

Whether your requirement is for the supply of a single gas engine generator or a complete turnkey power generation facility, we can meet that need. Our ability to add value by offering an end-to-end service, from initial proposal to reliable long-term maintenance, has led to us becoming a multi-national company with operations in ten countries across the globe. Our company prides itself on integrity, delivering only the highest quality products whilst providing a reliable accountable localised service.

Benefits of working with Clarke Energy
Clarke Energy provides flexible solutions for your gas generation projects. Our services range from the supply of a gas engine generator, through to the complete turnkey installation of a gas powered generation facility. Clarke Energy has a dedicated, top-quality team of sales, engineering, project management, commissioning and maintenance staff to meet your needs. We also offer long-term maintenance contracts backed up by a strong balance sheet, giving peace of mind with respect to the long-term performance of your GE gas generation equipment.

Agricultural Biogas

The farming industry offers a range of potential applications for agricultural biogas systems. Arable land can be used to grow crops which are fed into dedicated digestion systems. Alternatively, waste products from the farm can be harnessed to provide renewable energy. Agricultural digestion systems are typically sized between 0.5 and 3.0MW electrical output. The heat produced by the engines is typically used in a cogeneration/combined heat and power (CHP) configuration with heat from the engine cooling systems used to warm the digesters and pasteurise input materials. Additional heat is available from the engines to be used for local heat users such as grain dryers or for district heating.

Benefits of Agricultural Biogas

- Production of renewable power
- Avoidance of greenhouse gas emissions
- Disposal of waste
- Economical onsite power and reduced transmission losses
- Production of soil improver
- Cost effective, proven technology
- Helps isolate farmer from crop price fluctuations

Agricultural Biogas Schematic

Biogas Creation

Biogas is a renewable fuel that is created by the anaerobic decomposition of biodegradable organic materials. As a metabolic product of the participating methanogens and acidogenic bacteria, the prerequisites for its production are a lack of oxygen, a pH value from 6.5 to 7.5 and a constant temperature of 35–45 °C (mesophilic) or 45–55 °C (thermophilic). The digestion period or retention time is typically between 10 and 30 days depending upon the type of digestion employed. The anaerobic digestion systems of today operate largely within the mesophilic temperature range.

Typical Component Composition (by volume)

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane (CH₄)</td>
<td>50–65%</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>50–35%</td>
</tr>
<tr>
<td>Water vapour</td>
<td>saturated</td>
</tr>
</tbody>
</table>
Agricultural biogas plants utilise organic materials found on farms to generate biogas, a source of renewable energy. The plant may be designed to accept energy crops that have been grown specifically to input into the digestion facility. These crops are typically ensiled and stored in clamps or hoppers and are continuously fed into the digester throughout the year. Energy crops for biogas production can include:
- Maize
- Grass
- Wheat
- Rye
- Triticale

An approximate rule of thumb is that for 1 acre (0.405 hectares) of whole crop maize will produce enough gas to generate 1kW of electrical power.

Alternatively other organic materials such as waste products may be used including:
- Slurry
- Vegetable waste
- Glycerol – from biodiesel manufacture

The process of biogas generation is divided into four steps:

1. Preparation of the input material including removal of physical contaminants, practical size reduction & pasteurisation of wastes
2. Digestion (fermentation), consisting of hydrolysis, acetogenesis, acidogenesis and methanogenesis
3. Conversion of the biogas to renewable electricity and useful heat
4. Post treatment of the digestate

Initially the feedstock to the digesters is received in a primary pit or liquid storage tank. From here it is loaded into the digester by various different means depending upon the constitution of input materials.

In the digestion tanks a series of biological processes are harnessed in order to produce biogas. Hydrolysis is the process where the organic material is solubilised into the digestion liquid. It then undergoes the intermediate steps of acidogenesis and acetogenesis which create the precursor molecules for methanogenesis. Methanogens feed off these precursors and produce methane as a cellular waste product.

The biogas containing this biologically-derived methane is contained and captured in a gas storage tank which is located separately to the main digester, or alternatively can form its roof. The gas storage tank acts as a buffer in order to balance fluctuations in the production of gas in the digesters.

Typically an agricultural biogas plant will consist of two or more tanks topped with a twin-skinned gas-holding roof. The majority of biogas will be produced by the first digestion tank with a lower gas yield being attained in the secondary digestate storage tank.

The broad range of GE Jenbacher biogas engines are specifically designed to run at full load with high efficiency and high availability, despite a low heating value and fluctuating gas quality and pressure. The high quality and specially designed engine parts resist the impurities that usually appear in biogas and similar types of fuel.

Before the biogas can be fed into the gas engines, it needs to be dried and compressed. Severe contaminants such as sulphur should be removed if exceeding guideline concentrations. Not only will these measures considerably increase the availability of the generator, but they will also reduce the costs associated with operation.

Please request a fuel gas quality specification to understand operational limits for gas contaminants in the generator’s fuel.

Agricultural biogas plants typically generate returns via the sale of electricity alone, gate fees as a charge for the acceptance of waste materials may be low or non-existent. This means that the gas engine is of particular importance for the success of the plant. If the farmer grows energy crops to feed into the plant then there is a cost associated with producing the feedstock. These two factors make it essential for the farmer to have an engine with the maximum levels of availability (running time per year) and the highest levels of electrical efficiency, in order to convert the gas to the maximum level of electrical output and hence financial return.

The GE Jenbacher gas engine is known for having the highest levels of electrical efficiency on the market. When coupled with a contractual maintenance agreement with Clarke Energy, it will give peace of mind to the customer that they will achieve the highest levels availability and hence consistent returns from their biogas plant.

Clarke Energy has extensive experience in the engineering, installation and maintenance of generation facilities operating on gas derived from biological sources.

The GE Jenbacher gas engine is designed engine parts resist the fluctuating gas quality and pressure. The broad range of GE Jenbacher biogas engines are specifically designed to run at full load with high efficiency and high availability, despite a low heating value and fluctuating gas quality and pressure. The high quality and specially designed engine parts resist the impurities that usually appear in biogas and similar types of fuel.

Before the biogas can be fed into the gas engines, it needs to be dried and compressed. Severe contaminants such as sulphur should be removed if exceeding guideline concentrations. Not only will these measures considerably increase the availability of the generator, but they will also reduce the costs associated with operation.

Please request a fuel gas quality specification to understand operational limits for gas contaminants in the generator’s fuel.

Agricultural biogas plants typically generate returns via the sale of electricity alone, gate fees as a charge for the acceptance of waste materials may be low or non-existent. This means that the gas engine is of particular importance for the success of the plant. If the farmer grows energy crops to feed into the plant then there is a cost associated with producing the feedstock. These two factors make it essential for the farmer to have an engine with the maximum levels of availability (running time per year) and the highest levels of electrical efficiency, in order to convert the gas to the maximum level of electrical output and hence financial return.
If you would like to find out more about how Clarke Energy can help you develop your agricultural biogas project, please contact your local office for more details.

Algeria

33 bis, rue des Pins
Hydra, Alger, Algérie
Tel. +213 2160 88 86
Fax. +213 2169 35 01
algeria@clarke-energy.com

Australia

Building 1
2–4 Stirling Street
Thebarton
South Australia 5031
Adelaide
Australia
Tel. +61(0)8 8290 2100
Fax. +61(0)8 8443 5848
australia@clarke-energy.com

Bangladesh

Lotus Kamal Tower TWO
Level -16
59 & 61, Gulshan South Avenue
Gulshan-1
Dhaka-1212, Bangladesh
Tel. +88–02–8901638
9857355
9898837
Fax. +88–02–8826530
bangladesh@clarke-energy.com

France

Z. A. de la Malle
RD6
Bouc Bel Air 13320
France
Tel. +33 (0)4 42 90 75 75
Fax. +33 (0)4 42 90 75 76
france@clarke-energy.com

India

Shivkiran, Plot No. 160
CTS No. 632
Lane No.4
Dahanukar Colony
Kothrud
Pune 411038
India
Tel. +91 20 30247777
Fax. +91 20 30247800
india@clarke-energy.com

Ireland

Unit 7
Newtown Business Park
Newtownmountkennedy
County Wicklow
Ireland
Tel. +353 (0)1 281 0010
Fax. +353 (0)1 281 0520
ireland@clarke-energy.com

New Zealand

Unit 5
56 Pavilion Drive
Airpark II
Mangere
Auckland 2022
New Zealand
Tel. +64 (9) 256 9910
Fax. +64 (9) 256 9912
newzealand@clarke-energy.com

Nigeria

28, Joel Oggunnaike Street
GRA
Ikeja
Lagos
Nigeria
Tel. +234 (0)181 567 23
nigeria@clarke-energy.com

South Africa

Botswana
Mozambique
PO Box 1535
Link Hills 3652
KwaZulu-Natal
South Africa
Tel. +27 31 763 3222
Fax. +27 31 763 3041
southafrica@clarke-energy.com

Tanzania

Regus Centre
7th Floor
Amani Place
Ohio Street, PO Box 38568
Dar es Salaam
Tanzania
Tel. +255 (0) 222 196817
tanzania@clarke-energy.com

UK Head Office

Power House
Senator Point
South Boundary Road
Knowsley Industrial Park
Liverpool L33 7RR
United Kingdom
Tel. +44 (0)151 546 4446
Fax. +44 (0)151 546 4447
uk@clarke-energy.com

Tunisia

Immeuble Saray
1er étage – Bureau n°B.2
Les Berges du Lac
1053 Tunis, Tunisie
Tel. +216 (0)71 65 50 62
Fax. +216 (0)71 65 50 59
tunisia@clarke-energy.com

THE QUEEN’S A WARDS FOR ENTERPRISE: 2014