Agricultural Biogas
Agricultural Biogas

Clarke Energy is the authorised distributor and service partner for GE Energy’s gas engine division in a growing number of countries across the world. In addition to providing high-efficiency, reliable gas engines we combine this with the expertise and resources to deliver unbeatable product support.

Whether your requirement is for the supply of a single gas engine generator or a complete turnkey power generation facility, we can meet that need. Our ability to add value by offering an end-to-end service, from initial proposal to reliable long-term maintenance, has led to us becoming a multi-national company with operations in ten countries across the globe. Our company prides itself on integrity, delivering only the highest quality products whilst providing a reliable accountable localised service.

Benefits of working with Clarke Energy

Clarke Energy provides flexible solutions for your gas generation projects. Our services range from the supply of a gas engine generator, through to the complete turnkey installation of a gas powered generation facility. Clarke Energy has a dedicated, top-quality team of sales, engineering, project management, commissioning and maintenance staff to meet your needs. We also offer long-term maintenance contracts backed up by a strong balance sheet, giving peace of mind with respect to the long-term performance of your GE gas generation equipment.

Agricultural Biogas

The farming industry offers a range of potential applications for agricultural biogas systems. Arable land can be used to grow crops which are fed into dedicated digestion systems. Alternatively waste products from the farm can be harnessed to provide renewable energy. Agricultural digestion systems are typically sized between 0.5 and 3.0MW electrical output.

The heat produced by the engines is typically used in a cogeneration/combined heat and power (CHP) configuration with heat from the engine cooling systems used to warm the digesters and pasteurise input materials. Additional heat is available from the engines to be used for local heat users such as grain driers or for district heating.

Benefits of Agricultural Biogas

— Production of renewable power
— Avoidance of greenhouse gas emissions
— Disposal of waste
— Economical onsite power and reduced transmission losses
— Production of soil improver
— Cost effective, proven technology
— Helps isolate farmer from crop price fluctuations

Biogas Creation

Biogas is a renewable fuel that is created by the anaerobic decomposition of biodegradable organic materials. As a metabolic product of the participating methanogens and acidogenic bacteria, the prerequisites for its production are a lack of oxygen, a pH value from 6.5 to 7.5 and a constant temperature of 35-45 °C (mesophillic) or 45-55 °C (thermophillic). The digestion period or retention time is typically between 10 and 30 days depending upon the type of digestion employed. The anaerobic digestion systems of today operate largely within the mesophillic temperature range.

Typical Component Composition (by volume)

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane (CH₄)</td>
<td>50-65%</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>50-35%</td>
</tr>
<tr>
<td>Water vapour</td>
<td>saturated</td>
</tr>
</tbody>
</table>

Agricultural Biogas Schematic

Barfoots of Botley, Bognor Regis, UK, 1x JGMC320
Agricultural biogas plants utilise organic materials found on farms to generate biogas, a source of renewable energy. The plant may be designed to accept energy crops that have been grown specifically to input into the digestion facility. These crops are typically ensilaged and stored in clamps or hoppers and are continuously fed into the digester throughout the year. Energy crops for biogas production can include:
- Maize
- Grass
- Wheat
- Rye
- Triticale

An approximate rule of thumb is that for 1 acre (0.405 hectares) of whole crop maize will produce enough gas to generate 1kW of electrical power.

Alternatively other organic materials such as waste products may be used including:
- Slurry
- Vegetable waste
- Glycerol – from biodiesel manufacture

The process of biogas generation is divided into steps:

1. Preparation of the input material including removal of physical contaminants, practical size reduction & pasteurisation of wastes
2. Digestion (fermentation), consisting of hydrolysis, acetogenesis, acidogenesis and methanogenesis
3. Conversion of the biogas to renewable electricity and useful heat
4. Post treatment of the digestate

Initially the feedstock to the digesters is received in a primary pit or liquid storage tank. From here it is loaded into the digester by various different means depending upon the constitution of input materials.

In the digestion tanks a series of biological processes are harnessed in order to produce biogas. Hydrolysis is the process where the organic material is solubilised into the digestion liquid. It then undergoes the intermediate steps of acidogenesis and acetogenesis which create the precursor molecules for methanogenesis. Methanogens feed off these precursors and produce methane as a cellular waste product.

The biogas containing this biologically-derived methane is contained and captured in a gas storage tank which is located separately to the main digester, or alternatively can form its roof. The gas storage tank acts as a buffer in order to balance fluctuations in the production of gas in the digesters.

Typically an agricultural biogas plant will consist of two or more tanks topped with a twin-skinned gas-holding roof. The majority of biogas will be produced by the first digestion tank with a lower gas yield being attained in the secondary digestate storage tank.
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax.</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>28 rue des Tourelles, Wilaya - Hydra, Alger Algeria</td>
<td>+213 21 69 42 52</td>
<td>+213 21 69 42 52</td>
<td>algeria@clarke-energy.com</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Unit 5, 56 Pavillon Drive, Airpark II, Mangere, Auckland 2022, New Zealand</td>
<td>+64 (9) 256 9910</td>
<td>+64 (9) 256 9912</td>
<td>newzealand@clarke-energy.com</td>
</tr>
<tr>
<td>Australia</td>
<td>Building 1, 2-4 Stirling Street, Thebarton, South Australia 5031, Adelaide, Australia</td>
<td>+61 (0)8 8290 2100</td>
<td>+61 (0)8 8443 5848</td>
<td>australia@clarke-energy.com</td>
</tr>
<tr>
<td>Nigeria</td>
<td>28, Joel Ogunnaikie Street, GRA, Ikeja, Lagos, Nigeria</td>
<td>+234 (0)181 567 23</td>
<td></td>
<td>nigeria@clarke-energy.com</td>
</tr>
<tr>
<td>France</td>
<td>Z.A. de la Malle, RD6, Bouc Bel Air 13320, France</td>
<td>+33 (0)4 42 90 75 75</td>
<td>+33 (0)4 42 90 75 76</td>
<td>france@clarke-energy.com</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Regus Centre, 7th Floor, Amani Place, Ohio Street Office Park, Dar es Salaam</td>
<td>+255 (0) 222 196817</td>
<td></td>
<td>tanzania@clarke-energy.com</td>
</tr>
<tr>
<td>India</td>
<td>Shivikran, Plot No. 160, CTS No. 632, Lane No.4, Dahanukar Colony, Pune 41038, Kothrud, Kothrud, Pune</td>
<td>+91 20 30241777</td>
<td>+91 20 30241800</td>
<td>india@clarke-energy.com</td>
</tr>
<tr>
<td>Tunisia</td>
<td>Résidence Saray du Lac, Appt n°B.2 – 1er Etage, Les Berges du Lac, 1053 Tunis, Tunisie</td>
<td>+216 (0)71 962 062</td>
<td>+216 (0)71 962 059</td>
<td>tunisia@clarke-energy.com</td>
</tr>
<tr>
<td>Ireland</td>
<td>Unit 7, Newtown Business Park, Newtownmountkennedy, County Wicklow, Ireland</td>
<td>+353 (0)1 281 0010</td>
<td>+353 (0)1 281 0520</td>
<td>ireland@clarke-energy.com</td>
</tr>
</tbody>
</table>

If you would like to find out more about how Clarke Energy can help you develop your agricultural biogas project, please contact your local office for more details.